Answers Exercises **Sept 23.**

- In mammals, the male genome is generally bigger than that of females.
 False. Since females have 2 X chromosomes and males have 1 X and 1 Y chromosome, the male genome is smaller.
- 2. In genome organizational hierarchy which is correct... Chromosome > Chromatin > DNA
- If a female human has a recessive mutation only on one X chromosome, it cannot induce a phenotype.
 In females, one X chromosome is inactivated, so recessive mutations can in some circumstances produce phenotypes.
- 4. Which of the following statements is most correct -Gene promoters but not enhancer sequences are easy to identify from genomic sequences. In contrast (generally) to promoters, enhancer sequences are often harder to identify
- Intron sequences are translated into peptides and then removed to produce the mature protein sequence.
 False. Introns are removed from the pre-mRNA by RNA splicing before translation into proteins.
- Intronic sequences cannot be identified by computational analysis of genome sequences.
 False. Intron/exon boundaries can be identified through conserved sequence features
- 7. Across evolution, as animals become more complex, the size of their genomes **AND** the number of protein coding genes changes such that genome size and the number of protein coding genes are not related to animal complexity
- 8. Alternative splicing can increase the peptide diversity produced by protein encoding genes by
 Using alternative exons can increase protein diversity or
 Skipping exons can also increase protein diversity
- Mitochondria have their own genomes
 True. Mitochondria have their own genomes that encode a subset of mitochondrial proteins.
- 10. Histones are not involved in gene regulation but are required to form chromatin. False. Histones can regulate gene expression including through epigenetic regulation
- 11. Epigenetics is ...

 Regulation of gene expression by chemical modification of DNA (or DNA regulatory proteins such as histones)

- 12. Transcription factors commonly have Transcription factors commonly associate with DNA through a DNA binding domain
- 13. In most cell types in the body, chromosomes are found in Pairs i.e. Diploid. Most cells are diploid apart from germ cells
- 14. Most known mammalian genomes have...
 more non-coding genes than protein coding genes
- 15. For routine sequencing, NGS technology is the first choice. False. Sanger sequencing is mostly used for routine sequencing.
- 16. Primers are required for Sanger sequencing
 True. A primer is required for Sanger sequencing.
- 17. Proteins can be reverse transcribed into RNA or DNA

 False. Proteins cannot be reverse transcribed into RNA as far as we know.
- 18. tRNA stands for... transfer RNA
- 19. Spliceosomes... have protein and RNA components
- 20. Gene regulatory elements constitute only a small portion of the human genome. False. Gene regulatory elements make up an estimated 40% of the human genome
- 21. The DNA sequence ATGAGTAAAGAAGAACTT would encode a peptide beginning with...
 This sequence translates into a peptide sequence begins with Methionine
- 22. The genetic code has no redundancy

 False. Several codons can encode the same amino acid.
- 23. Once a pre-mRNA has completed splicing, it is always immediately translated. False. mRNAs may undergo many additional modifications and regulatory steps.
- 24. Transcription factors usually ... Bind DNA
- 25. Most genes are spliced by... the U2 spliceosome
- 26. Chromosomes are most easily visible at interphase. False. Chromosomes are most easily visible at prophase.

- 27. A protein encoding gene with 3 exons can make... not enough information to answer. Many different peptides could be produced through slicing and other mechanisms.
- 28. NGS and Sanger sequencing technologies are both based on in vitro DNA replication.

Correct. Both technologies are based on this foundation.

- 29. Most proteins use Methionine as the first amino acid.

 True. The majority of proteins do begin with Methionine
- 30. Animal cloning requires... removing the nucleus from a host egg cell.